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Abstract

Motivation: As ‘omics’ biotechnologies accelerate the capability to contrast a myriad of molecular

measurements from a single cell, they also exacerbate current analytical limitations for detecting

meaningful single-cell dysregulations. Moreover, mRNA expression alone lacks functional inter-

pretation, limiting opportunities for translation of single-cell transcriptomic insights to precision

medicine. Lastly, most single-cell RNA-sequencing analytic approaches are not designed to investi-

gate small populations of cells such as circulating tumor cells shed from solid tumors and isolated

from patient blood samples.

Results: In response to these characteristics and limitations in current single-cell RNA-sequencing

methodology, we introduce an analytic framework that models transcriptome dynamics through

the analysis of aggregated cell–cell statistical distances within biomolecular pathways. Cell–cell

statistical distances are calculated from pathway mRNA fold changes between two cells. Within an

elaborate case study of circulating tumor cells derived from prostate cancer patients, we develop

analytic methods of aggregated distances to identify five differentially expressed pathways associ-

ated to therapeutic resistance. Our aggregation analyses perform comparably with Gene Set

Enrichment Analysis and better than differentially expressed genes followed by gene set enrich-

ment. However, these methods were not designed to inform on differential pathway expression for

a single cell. As such, our framework culminates with the novel aggregation method, cell-centric

statistics (CCS). CCS quantifies the effect size and significance of differentially expressed pathways

for a single cell of interest. Improved rose plots of differentially expressed pathways in each cell

highlight the utility of CCS for therapeutic decision-making.

Availability and implementation: http://www.lussierlab.org/publications/CCS/
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1 Introduction

The advent of single-cell RNA-sequencing (scRNA-seq; Liang et al.,

2014; Tang et al., 2009) enables discovery of transcriptional pat-

terns at the most fundamental unit of life. In contrast, conventional

RNA-seq technologies only provide an average RNA expression

across many cells, concealing much of the transcriptional heterogen-

eity (Schubert, 2011). Understanding individual cell uniqueness

within a multicellular context offers new insights into the biological

underpinning of organ ontogeny, immune response and cancer eti-

ology, progression and drug resistance (Navin, 2015; Sandberg,

2014). Particularly, scRNA-seq has become increasingly adopted to

resolve intra-tumor heterogeneity and analyze rare tumor cell popu-

lations such as circulating tumor cells (CTCs) (Aceto et al., 2014;

Chen and Bai, 2015; Ramsköld et al., 2012) originating from

primary solid tumors. However, analyzing whole-genome RNA ex-

pression from individual cells remains challenging (Stegle et al.,

2015). These challenges include the poor sensitivity of conventional

methods for studying a limited number of cells and the absence of

methods for generating statistical significance at a single-cell

transcriptome.

Improvements in scRNA-seq experimentation, through the add-

itional quantitative standards of spike-in external control RNA

(Jiang et al., 2011) and unique molecular identifiers (Islam et al.,

2014), as well as computational methodologies (Ding et al., 2015;

Grün et al., 2014; Scialdone et al., 2015; Wu et al., 2014), have

reduced the impact of noisy measurements in single-cell RNA ex-

pression. However, these methods rely on expensive technologies

and require many single-cell transcriptomes to adequately model

noise and infer sources of variation, which preclude analysis of indi-

vidual cells. To establish significance of patterns observed at a single

cell, one could in theory compare cellular mRNAs with a consensus

mRNA expression atlas (Kapushesky et al., 2009; Lukk et al.,

2010). However, the notion that there is a consensus transcriptome

is questionable as expression levels and kinetics vary over time and

across tissues. In response to these shortcomings, we introduce a

novel analytic framework: the analysis of aggregated cell–cell statis-

tical distances within pathways (Fig. 1). We hypothesized that we

could aggregate many analyses of pairs of single-cell transcriptomes

to predict differentially expressed pathways (DEPs). In principle,

this approach could even produce cell-centric statistics (CCS) that

may scale down to analyze DEPs in a single cell despite the lack of

true reference transcriptome and circumvent sample size require-

ments intrinsic to group-based statistics. By quantifying gene sets

(pathways) rather than individual mRNAs, our framework is de-

signed ab initio to reduce the noise intrinsic to scRNA-seq measure-

ments, while providing functional interpretation of dynamic

changes between cells.

Our aggregation framework begins by quantifying transcription

dynamics for a pair of cells through the application of a gene set

scoring procedure, N-of-1-pathways Mahalanobis Distance (MD),

that we recently developed to predict DEPs using a single pair of

transcriptomes (Schissler et al., 2015) (Fig. 1A). MD produces

pathway-level significance that is readily interpretable biologically

and potentially clinically actionable for pathway-targeting therapies.

Originally, we applied MD to measure dynamic changes of mRNA

within a single subject by exploring differential pathway expression

from a baseline to a case sample (i.e. dysregulation). In this manner,

two transcriptomes from a patient could be transformed into a per-

sonal pathway dysregulation profile. These patient-specific profiles

are predictive of clinical outcomes, including survival and response

to therapy, in cancer and viral infection (Gardeux et al., 2015;

Gardeux et al., 2014a, b; Schissler et al., 2015). Moreover, N-of-1-

pathways MD can also be used to measure differential pathway

expression between any pair of samples. We have shown that this

approach unveils DEPs between groups when traditional statistics

are underpowered (Schissler et al., 2015).

In this study, we introduce and validate our aggregation frame-

work using RNA-seq data derived from prostate cancer CTCs as a

proof of concept and implicate mechanisms of resistance to andro-

gen inhibition therapy. DEPs are identified at the individual cell level

using the CCS component of the framework. Emerging biological

systems properties of pathway resistance are illustrated at the level

of individual cells, as well as aggregated at the level of individual pa-

tient and at the treatment group level. The accuracy of our aggrega-

tion method in prioritizing DEPs across treatment groups is

contrasted to that of conventional methods such as Gene Set

Enrichment Analysis (GSEA) (Subramanian et al., 2005), single-cell

differential expressed genes (SCDE) (Kharchenko et al., 2014) fol-

lowed by gene set enrichment (DEGþEnrichment) and weighted

least squares (WLS) regression (Piegorsch, 2015). Further, novel

single-cell visualization of DEP transcriptome dynamics is developed

to demonstrate the utility of CCS for predicting therapeutic resist-

ance based on a single CTC.

2 Methods

2.1 Data sets
Single-cell RNA-seq of circulating (prostate) tumor cells. RNA-seq

read count data from single prostate CTCs (Miyamoto et al., 2015)

were downloaded from the Gene Expression Omnibus (Edgar et al.,

2002) under accession GSE67980 on September 22, 2015. A total of

108 candidate CTCs were isolated from the 13 blood samples using

microfluidic CTC-iChip technology (Ozkumur et al., 2013). RNA

sequences were aligned to human transcriptome (based on hg19).

Further, cells that lacked epithelial gene markers or possessed gene

signatures consistent with leukocytes were excluded to increase con-

fidence that the remaining cells are truly prostate derived

(Miyamoto et al., 2015). The single candidate prostate CTCs were

filtered to 77 lineage-confirmed prostate CTCs with at least 100 000

uniquely aligned sequencing reads as described in Miyamoto et al.

All read counts were transformed into Reads per Million (RPM) fol-

lowing the pipeline for normalizing CTC RNA-seq data from Aceto

et al. (2014).

Androgen inhibition therapeutic response annotations for CTCs.

CTCs were derived from 13 prostate cancer patients. These patients

were retrospectively labeled as either ‘enzalutamide (EZT)-naı̈ve’ (n

¼ 8, Group N) or ‘EZT-resistant’ (n ¼ 5, Group R). Each CTC

was labeled according to the patient group label (nN ¼ 41 cells, nR

¼ 36 cells).

Signaling Pathways defined by Pathway Interaction Database.

Gene sets were defined using the Pathway Interaction Database

(PID; Schaefer et al., 2009; last update September 18, 2012). Genes

were originally annotated to pathways using Universal Protein

Resource (UniProt) IDs (Consortium, 2012). UniProt IDs were con-

verted to HUGO (Povey et al., 2001) gene symbols in R (R

Development Core Team, 2011) using the Bioconductor

(Gentleman et al., 2004) package MyGene.Info (Wu et al., 2013).

All gene symbols were retained in the case that UniProt IDs mapped

non-uniquely to multiple gene symbols. Further, 349 UniProt IDs

without corresponding HUGO gene symbols were removed. Finally,

among the 223 PID-defined gene sets, the 187 pathways comprising

>15 genes were retained for analysis, as we previously have shown
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Fig. 1. Analytic framework: analysis of aggregated cell–cell statistical distances within pathways unveils cross-group, within-group and cell-centric properties of

single-cell transcriptomes. Here, the four analytic strategies used in this study are presented, culminating with CCS. (A) Prior work led to the development of N-

of-1-pathways MD. In this study, MD is used to find DEPs between a pair of cells. MD quantifies differential mRNA expression within a set of genes (left, illustrated

as a funnel). Specifically, the average signed Mahalanobis vertical distance (MD score, �d ) from the equal-expression reference line (diagonal) quantifies differen-

tial pathway expression between two cells (right). One such distance is illustrated as a vertical line for gene j. A bootstrap procedure produces a P-value testing

whether the expected value of the MD score, �d , is different from zero, indicating a DEP. This MD score can be interpreted as a covariance-adjusted log fold

change of the pathway mRNA expression between the paired cells. (B) When studying single-cell RNA-seq datasets from two phenotypic groups (e.g. drug A ver-

sus drug B), pairwise statistics of DEPs can be aggregated in a cross-group, ‘many-to-many’ fashion (left). This affords discovery of phenotypic differences, an-

chored in mechanistic interpretation while embracing the cellular heterogeneity revealed by scRNA-seq data. On the right, a bootstrapped distribution of the

median MD score (second quartile, Q2) is used to test whether a pathway is centrally differentially expressed between the cross-group pairs. The two shaded tail

areas represent the cross-group P-value associated with a sample median MD score, �d . (C) Inspection of many-to-many pairings of cells within a group provides

insight into within-group heterogeneity of pathway expression (left). Using the P-value provided by the MD pairwise procedure for a pathway of interest, every

within-group pair of cells can be classified as having a DEP or the pathway is non-significantly differentially expressed (‘Non-Sig’, on right). Higher abundance of

DEPs within group indicates greater pathway expression heterogeneity. (D) The pairwise, cross-group comparisons for a single cell of interest (CoI) can be aggre-

gated and summarized to provide CCS of DEPs. This ‘one-to-many’ perspective (left) yields single-cell, pathway-anchored differences between phenotypes. CCS

presents opportunities for precision medicine in developing drug targets or understanding propensity for response to therapy. On the right, the CCS distribution

of MD scores for a given pathway are displayed in a histogram. A ‘central pair’ is found by retrieving the pair associated with the median MD score. The central ef-

fect size of pathway differential expression is given by the MD score for the central pair, �d . The corresponding P-value for the central pair provides a ‘CCS

P-value’, which can be used to classify the CoI as differentially expressed for a pathway

i82 A.Grant Schissler et al.
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this cutoff is robust against individual gene bias (Yang et al., 2012a,

b; Chen et al., 2013; Perez-Rathke et al., 2013).

2.2 Pairwise statistics of DEPs via N-of-1-pathways MD
Differential pathway expression for a pair of single-cell transcrip-

tomes is quantified by the N-of-1-pathways MD score, a

covariance-adjusted log fold change of all pathway genes (Schissler

et al., 2015). Here, a pathway is defined as a set of genes that func-

tion together or are related molecularly. Specifically, the pathway

MD score ( �d) is computed by measuring the average signed

Mahalanobis vertical distance (Mahalanobis, 1936) from an equal-

expression reference line (diagonal line in Fig. 1A):

FCj ¼ C2j=C1j (1)

�d ¼ 1

m

Xm

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

s2
1s2

2 � ðs12Þ2

s
log2ðFCjÞ (2)

where FCj refers to the fold change of jth mRNA; C1j, C2j refers to

the jth mRNA expression for the baseline cell and case cell within

the cell–cell pair, respectively; j indexes the m genes (mRNAs) anno-

tated to the pathway; s1 is the sample standard deviation of the C1j

for j ¼ 1, . . ., m; s2 is the sample standard deviation of the C2j s and

s12¼ s21 is their sample covariance.

2.2.1 Pairwise significance: assessing certainty of DEPs through

mRNA resampling for a cell–cell pair

The statistical significance for determining a DEP between a pair of

cell transcriptomes was assessed by bootstrapping the average signed

Mahalanobis vertical distance �d (Equation (2)) (Schissler et al.,

2015) for a given gene set. A bootstrap resample (Chernick, 2008)

was computed by randomly sampling with replacement the gene in-

dices to produce a new, bootstrapped average MD score, �d . This

was repeated B ¼ 20 000 times to produce a bootstrap distribution

for a given pathway. We view the deviation from zero as indicative

of pathway differential expression. This leads us to define a proxy

‘P-value’ as the smaller of two proportions ( �d� >0)/B or ( �d� <0)/B.

If the distribution of �ds completely separates from the origin, then

the P-value is conservatively recorded as 1/(B þ 1).

2.2.2 Quantifying differential pathway expression for CTC pairs

Every possible pair of the 77 CTCs was selected for a total 2926

pairs of transcriptomes. MD scores were computed for each of the

187 externally defined PID pathways for every CTC pair. RPM

counts for each HUGO gene symbol were transformed to log2(RPM

þ 1) to stabilize variance in the expression counts, preserve zero

counts, and afford log fold change interpretation of the MD scores.

In the degenerative case that the Mahalanobis multiplier on the log

fold change (Equation (2)) is not well defined, i.e. s2
1s2

2 � ðs12Þ2 ¼ 0,

the MD score for that pathway is set to zero, indicating an absence

of differential pathway expression.

2.3 Analysis of aggregated cross-group, cell–cell

statistical distances within pathways
The first application of our analytic framework quantifies effect size

and determines the statistical significance for phenotypic pathway

differential expression by exploring the ‘cross-group’ pairs. Cross-

group pairs are defined as cell–cell pairings that involve two distinct

phenotypes (Fig. 1B). As an illustrative case study, we present an

analysis of aggregated cell–cell statistical distances within path-

ways for the CTC cross-group pairs. This analysis prioritizes

EZT-resistance pathways by investigating the MD scores for every

pairwise comparison between CTCs from the EZT-naı̈ve (N) pa-

tients and CTCs from the EZT-resistant (R) patients (Section 2.1).

Here, N CTCs serve as the reference baseline and R CTCs as the

case sample; thereby, the log fold change of expression is positive

when an mRNA is overexpressed in an R cell relative to an N cell.

The pairing of all R-N CTCs results in 36 N cells times 41 R cells to

yield 1476 pairs. In turn, this results in 1476 MD �d scores for a

given pathway. Because the cross-group MD score distributions are

right skewed (data not shown), pathways are prioritized by median

MD scores that are statistically different from zero, indicating

phenotypic pathway differential expression.

2.3.1 Cross-group significance via clustered bootstrapping:

prioritizing EZT-resistance pathways using CTCs

A novel bootstrapping procedure is developed to assess the signifi-

cance of cross-group DEPs in potentially correlated (i.e. ‘clustered’)

single-cell RNA-seq samples. A test is constructed to assess the de-

gree to which the median (second quartile noted as Q2) cross-group

MD score of a pathway is different from zero. Specifically, the statis-

tical hypotheses are as follows:

H0 : Q2 ¼ 0 (3)

Ha : Q2 6¼ 0 (4)

To construct a statistical test of these hypotheses, we begin by

mimicking a null distribution with Q2 truly zero, H0, by subtracting

the observed sample median bQ2 from every cell–cell MD score to

create a ‘shifted’ distribution of �d . Next, bootstrapping from the

null distribution is conducted to construct an approximate sampling

distribution of bQ2. To account for within-patient correlation, the

resampling procedure incorporates the nested structure of the data

(i.e. multiple CTCs from a patient). To do so, patients are

resampled: eight ‘patients’ are sampled with replacement from the

naı̈ve patients to create a bootstrapped N sample, N*, and five ‘pa-

tients’ are sampled with replacement from the resistant patients to

create a bootstrapped R sample, R*. All CTCs are retained from the

selected patients. The median is calculated from the shifted MD

scores corresponding to all resampled pairs, bQ2.

This process was replicated 20 000 times to approximate the dis-

tribution of bQ�
2 under H0. To assess the two-sided alternative hy-

pothesis via a P-value, two tail probabilities were calculated from the

bootstrap distribution: Pr ð bQ�2 < �j bQ2j Þ and Pr ð bQ�2 > j bQ2j Þ.
The bootstrap P-value is the sum of these two tail probabilities

(Fig. 1C). This procedure was repeated for all 187 PID pathways.

2.3.2 Conventional cross-group significance: prioritizing

EZT-resistance pathways by gene set testing methods

The 187 PID pathways were ranked according to differential path-

way expression between EZT-resistant patients (R group) and EZT-

naı̈ve patients (N group) using an ad hoc two-sample comparison

with WLS (Piegorsch, 2015), GSEA (Subramanian et al., 2005) and

single-cell DEGþEnrichment (Kharchenko et al., 2014). First, an

ad hoc statistical approach, WLS, was applied to determine path-

ways differing between treatment groups. For a given pathway, the

corresponding mRNA counts were averaged (using an arithmetic

mean) for each CTC to summarize the pathway-level expression.

Then, a within-patient pathway score was computed by averaging

the pathway means across all CTCs from a patient. The pathway

scores for all 13 patients were regressed on a binary indicator for

group status (1 ¼ Resistant Group, 0 ¼ Naı̈ve Group) using WLS

Analysis of aggregated cell–cell statistical distances i83
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with weights corresponding to the count of CTCs for each patient

(with the lm function in R), essentially mimicking a weighted, two-

sample t-test. The pointwise (unadjusted) P-value testing for testing

whether group N differed from group R was retained to rank the

pathways for comparison with other methods.

Next, conventional gene set testing approaches, GSEA and DEG þ
Enrichment, were applied to rank how pathways differ between

groups. The expression values of all CTCs within a patient were aver-

aged (using an arithmetic mean) to obtain a within-patient mRNA

measurement. In the GSEA analysis, the significance of pathway differ-

ential expression was assessed by completing 1000 permutations of the

patients’ resistant and naı̈ve labels to obtain a pathway P-value using

publically available GSEA software in R. In the DEGþEnrichment

analysis, differentially expressed genes (DEGs) were first identified by

SCDE (Kharchenko et al., 2014) pointwise P < 0.05), and then each

pathway was analyzed for enrichment of the identified DEGs. In total,

ordering the corresponding pointwise P-values calculated by WLS,

GSEA and DEGþEnrichment, respectively, produced three ranked lists

for the 187 PID pathways.

2.4 Analysis of aggregated within-group pairs

quantifying heterogeneity through DEP abundance
Within a priori defined gene sets, one may address whether a pheno-

type displays consistent mRNA expression within pathways (Fig. 4).

The investigation of the prevalence of DEPs for within-group pairs

(Fig. 1C) lends insight into such mechanistic variation. Continuing

the illustrative example of the CTC case study, the P-values corres-

ponding to the MD score for the N-N and R-R pairs, excluding

within-patient pairs, were examined to determine the prevalence of

differential expression for the five prioritized resistance-associated

pathways. The proportion of instances where the given pathway

was significantly differentially expressed (Benjamini and Yekutieli,

2015; false discovery rate<5%) for either the N-N or R-R pairing

type was calculated. Here, N-N pairs are arbitrarily ordered; there-

fore, the direction of differential pathway expression is ignored.

2.4.1 Within-group DEP abundance variability and significance

A ‘clustered’ bootstrap (Section 2.3.1) was applied to produce 95%

percentile confidence intervals on the proportion of DEPs for

within-group CTC pairs. Bootstrap resampling was conducted with

replacement on eight patients for the N group or on five patients for

the R group. Further, we tested difference of DEP prevalence within

group by similar procedure. Specifically, a bootstrap distribution

was constructed for the differences of DEP prevalence between

EZT-resistant and EZT-naı̈ve groups. To assess the significance at

5%, 1% and 0.1% levels, we examined whether the 95%, 99% and

99.9% bootstrap percentile confidence intervals from the difference

contained zero.

2.5 CCS: Aggregating cell-specific, cross-group pairs to

produce single-cell DEPs
The final aggregation analytic method in our framework is CCS of

individual cell differential pathway expression. CCS allows for ex-

ploration of individual cellular mechanistic differences from a refer-

ence population. In the CTC case study, each cell was paired with

all cells of the opposing treatment group to unveil a single cell’s pro-

pensity for EZT resistance (Fig. 1D).

2.5.1 CCS significance: assessing cross-group DEPs for a single

cell

We seek to determine a central DEP status for an individual CTC

with respect to resistance–naı̈ve cell comparisons. Every CTC has a

distribution of DEP statuses when compared with the opposing

treatment group. In particular, a naı̈ve-labeled CTC has a pairing

with each of the 41 EZT-resistance CTCs, and each EZT-resistant

CTC has 36 pairings with the naı̈ve CTCs. Thus, for a given path-

way, a naı̈ve cell has 41 DEP statuses of up (þ), down (�) or a non-

significantly (NS) expressed pathway. For naı̈ve cells, the pathway

median MD maps to exactly one CTC pair (‘central pair’, Fig. 1D).

This pair’s DEP status is annotated as the ‘central DEP status’ of this

CTC. For the resistant CTCs, there are two CTC pairs that are

involved in the calculation of the median CTC. In this case, we enact

the following criteria for determining the central DEP status:

(1)þwhen both CTC pairs are up, (2) � when both CTC pairs are

down, (3)þwhen one CTC is up and the other is NS, (4) � when

one CTC is down and the other is NS and (5) NS when both CTCs

are NS differentially expressed.

2.6 Modified rose plots of CCS P-values
Modified rose plots (Beniger and Robyn, 1978) were created in R

using the ggplot2 package (Wickham, 2009). Rose plots illustrating

the central DEP significance for two treatment-characteristic cells

were constructed using cell-central statistics (CCS) (Section 2.5.1).

Each rose plot is modified in that diagonally opposite ‘petals’ (pie-

shaped sectors) across the horizontal line represents distinct path-

ways, with positive MD scores above the axis and negative ones

below. To enable both visualization of effect size and statistical sig-

nificance for resistance-associated pathways, the petal radii repre-

sent a transformed CCS P-value. Specifically, a cross-group, central

P-value for a cell of interest is transformed by applying the negative

natural logarithm. This transformation maps P-values from the

unit interval to the positive real line and provides more weight to

P-values near zero. Further, following principles of aspect ratio visu-

alization, the petal radii were specified as the square root of this

transformed P-value (Court, 1963).

3 Results and Discussion

3.1 Case study: aggregation of cell–cell distances within

pathways of prostate CTCs unveils resistance

mechanisms to androgen inhibition treatment
In metastatic prostate cancer, standard treatments target the

Androgen Receptor (AR) pathway either through reduction of tes-

tosterone or by blocking the AR with an inhibitor (Trewartha and

Carter, 2013). In the past few years, potent new AR inhibitors have

emerged, such as EZT that provide additional clinical benefit to

prostate cancer patients (Trewartha and Carter, 2013). To this end,

RNA-seq data from CTCs sampled from 13 advanced prostate can-

cers treated with or naı̈ve to EZT (GSE67980; Miyamoto et al.,

2015) was available for analysis. After filtering of potential leuko-

cytes and poorly sequenced cells, 77 ‘lineage-confirmed’ prostate

CTCs remained (Miyamoto et al., 2015). Distributions of distances

within signaling pathways for the cross-group CTC pairs were

examined to discover mechanisms of EZT resistance.

3.2 Overview of aggregation framework validation and

benchmarking
The aggregation framework was designed to analyze transcriptional

dynamics of pathways at the single-cell level and, as such,

i84 A.Grant Schissler et al.
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determining a single-cell gold standard remains elusive. Despite this,

the accuracy of our framework in prioritizing DEPs is assessed by

comparison with traditional cross-group pathway analytics: GSEA

(Subramanian et al., 2005), DEGþEnrichment (Kharchenko et al.,

2014) and WLS regression (Piegorsch, 2015). Notably, none of the

explored methods were able to discover dysregulated pathways

while controlling for multiplicity of testing. In our approach, EZT-

resistance pathways measured by MD scores at the level of individ-

ual cells are aggregated at the level of treatment groups (Section

2.3). Further, novel cell-centric visualizations of DEP transcriptome

dynamics are developed to demonstrate the utility of CCS for pre-

dicting therapeutic resistance from a single CTC.

3.2.1 Aggregation of cross-group distances concurs with conven-

tional cohort-based analytics while enabling cell-specific

interpretation

We accumulated evidence of EZT-mediated dysregulation for each

of the 187 PID pathways using the four analytic methods. A ranked

list of the pathways was created for every method by sorting the

pathways by increasing P-values (Sections 2.3.1 and 2.3.2). We as-

sessed the concordance of these ranked lists visually (Fig. 2) and

with two distinct correlation tests. The overall concordance between

the ranked lists was assessed via Spearman’s rho (Spearman, 1904).

Because highly ranked pathways (low P-values) are of greater inter-

est in determining EZT-resistance mechanisms, we also computed a

weighted correlation, the top-weighted overlap score (Top-WOS;

Yang et al., 2006). Top-WOS is correlation metric that more heavily

weights top-ranked pathways. Overall, our ‘cross-group’ and WLS

ranked lists display a high level of agreement (Spearman’s

q ¼ 0.832). Moreover, they exhibit a strong concordance in the

highly prioritized pathways (Top-WOS P < 0.001). The cross-

group rankings moderately concur with GSEA globally (Spearman’s

q ¼ 0.481), but they do not agree in the highly ranked

pathways (Top-WOS P ¼ 0.558). GSEA and DEGþEnrichment

ranked list are mildly negatively correlated (Spearman’s q ¼ �0.16,

P ¼ 0.03), and they do not agree in highly ranked pathways (Top-

WOS P ¼ 0.98).

Further, a computational literature evaluation approach (Yang

et al., 2010) using Pubmatrix (Becker et al., 2003) was conducted to

determine the degree to which the top-hit pathways prioritized by

each method were relevant to prostate cancer and treatment (resam-

pling details in Supplementary Section I). The aggregated cross-

group distances-identified pathways display strong literature sup-

port (OR ¼ 56, P ¼ 0.002). However, GSEA, WLS and

DEGþEnrichment did not have strong literature support for their

top pathways with OR ¼ 20 (P ¼ 0.16), OR ¼ 2.3 (P ¼ 0.77)

and OR ¼ 2.2 (P ¼ 0.81), respectively.

Notably, none of the other three methods are able to specify cell-

specific transcriptional dynamics. This unique advantage of our ap-

proach allows for interpretation and discovery at the single cell,

within patient, within treatment group while still enabling powerful

cross-group comparisons. The following sections highlight the types

of discoveries possible through the analysis of aggregated cell–cell

distances.

3.2.2 Pathway dysregulation of resistant–naı̈ve CTC pairings

identify potential EZT-resistance mechanisms

Our investigation of the CTC pairs begins with a focus on the R-N

pairing subtype. By exploring the MD score distribution for these

pairs, we aimed to identify EZT-resistance pathways. There are 41

and 36 cells from the N Group and R Group, respectively. This

yields 1476 R-N CTC pairs. MD is applied to each of these pairs to

compute scores for each of the 187 signaling pathways defined by

the PID with at least 15 genes annotated to the gene set (Schaefer

et al., 2009). PID pathways are manually curated based on well-

established biomolecular interactions and cellular processes. The

curating effort was enabled through a collaboration of the National

Cancer Institute and the Nature Publishing Group. PID signaling

pathways are not viewed as a comprehensive ontology of biological

pathways, but key pathways implicated in cancer and other diseases.

To compensate for the fact that multiple CTCs were derived from a

single patient, we developed a ‘clustered’ bootstrapping procedure

(Section 2.3.1) to assess whether the median MD score for a given

pathway is larger than zero, an indication of pathway differential

expression. Figure 3 displays the five pathways whose pointwise P-

values were calculated to be <2%. All five pathways are higher ex-

pressed in the EZT-resistant CTCs. The five prioritized pathways

are Non-canonical Wnt signaling pathway (ncWnt), ErbB2/ErbB3

signaling events (ErbB2/B3), Syndecan-4-mediated signaling events

(SDC4), FOXM1 transcription factor network (FoxM1) and S1P1

signaling pathway (S1P1).

3.2.3 Top prioritized pathways recapitulate mechanisms of EZT-

resistance and highlights SDC4 as a potential targetable pathway

A number of studies have reported the implications of these oncoge-

netic pathways/receptors in tumorigenesis via cell cycle develop-

ment, proliferation or progression (Dc et al., 2014; Akao et al.,

Fig. 2. EZT-resistant prioritized pathways concur with established statistical

and gene set testing procedures. MD scores were calculated for each of the

1476 cross-group pairs of cells (Fig. 1B) to obtain a median MD score for each

of the 187 pathways of the PID (Section 2.1). For each pathway, a ‘cross-

group’ P-value was determined for this median MD score (Section 2.3.1). For

comparison, pathway P-values were also calculated for the three cross-group

pathway analysis methods (WLS, GSEA, DEGþEnrichment, Section 2.3.2).

Panel A contains scatterplots displaying the bivariate relationship between P-

values generated from every pairwise combination of methods. Each dot rep-

resents a single pathway. GSEA correlates with cross-group, WLS and

DEGþEnrichment. DEGþEnrichment shows poor concordance with cross-

group and WLS. Panel B displays estimated densities of the P-values corres-

ponding to each method. CCS and WLS show a similar distribution of P-val-

ues; GSEA and DEGþEnrichment are similar in P-value distribution.

WLS¼Weighted Least Squares; GSEA¼Gene Set Enrichment Analysis;

DEGþEnrichment¼Differentially Expressed Genes followed by Enrichment

Analysis of aggregated cell–cell statistical distances i85
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2006; Pyne et al., 2012; Koo et al., 2012). Notably, the non-canon-

ical Wnt signaling pathway has been implicated in antiandrogen re-

sistance in these data (Miyamoto et al., 2015) and has been

prioritized by our method. Indeed, FoxM1 has been implicated in

androgen resistance in vitro (Ketola et al., 2014) and in other endo-

crine responsive tumors (Sanders et al., 2013). Similarly, the

ERBB2/ERBB3 axis has been well-established as a marker of poorly

prognostic prostate cancer (Craft et al., 1999) and ongoing clinical

trials are underway targeting this pathway (Vaishampayan et al.,

2015). Under similar early development is the targeting of the

sphingolipid metabolism pathway (S1P1) that appears to have rea-

sonable responsiveness in in vitro models of hormone-refractory

prostate cancer (Venant et al., 2015). Perhaps this is the most novel

discovery is the prioritization of the SDC4 pathway. SDC4 is under

the regulation of non-canonical WNT signaling pathway (Carvallo

et al., 2010), and thus may serve as another downstream mechanism

of abrogating aberrant WNT signaling alone or in combination with

WNT inhibition.

3.2.4 Within-group aggregation reveals homogeneity across EZT-

resistant cells and heterogeneity for naı̈ve cells within prioritized

pathways

Investigating the prevalence of significant DEPs for the within-group

pairs shows consistent expression of implicated pathways for the

EZT-resistant group and more variable expression within the EZT-

naı̈ve group (Fig. 4). Remarkable mRNA expression heterogeneity is

observed for these CTCs (average mRNA Pearson correlation,

rN-N ¼ 0.313, average rR-R ¼ 0.373). As expected within the five

prioritized pathways, biological resistance is tightly regulated as

quantified by little differential pathway expression for the R-R pairs

(average DEP ¼ 12%, Section 2.4). In contrast, the naı̈ve group

demonstrates more heterogeneity within these pathways (Fig. 4),

which suggests some EZT-naı̈ve CTC may harbor intrinsic propen-

sity for resistance. In addition, the proportion of DEP is different be-

tween EZT-resistant group and EZT-naı̈ve group for all of the five

pathways (P-value<5%, Section 2.4.1). Collectively, these results

indicate that EZT-resistance is likely to be mediated through regu-

lated expression of these prioritized pathways in exposed CTCs.

3.2.5 Transcriptome dynamics between EZT-resistant and -naı̈ve

groups for individual CTCs elucidates patient-specific relationships

A cell-centric perspective provides interpretation of transcriptional

dynamics at the single cell level. In the prostate cancer CTC data set,

each cell can be classified as up-expressed, down-expressed or NS

differentially expressed with respect to the opposing treatment

group (Section 2.5.1). For example, a naı̈ve-classified CTC is

compared with all EZT-resistant CTC. Figure 5A illustrates the dis-

tribution of DEP status for cell by patient. It can be seen that EZT-

resistant patients are relatively higher expressed in the prioritized

pathways. However, inspection of a few naı̈ve patients reveals a pro-

pensity for EZT-resistance based on even higher pathway expression

Fig. 3. Cross-group pairwise CTC comparisons implicate five molecular path-

ways of EZT resistance. MD scores (Equation (2)) were calculated for each of

the 1476 cross-group pairs of cells (Fig. 1B) to obtain a median MD score

(Section 2.3) for each of the 187 pathways of the PID (Section 2.1). For each

pathway, a cross-group P-value was determined for this median MD score

(Section 2.3.1). For the five pathways with pointwise P-values<2%, boxplots

illustrate the distribution of effect size as measured by MD scores for all pair-

wise comparisons of transcriptomes from EZT-resistant (R) versus EZT-naı̈ve

(N) CTCs. MD scores greater than zero indicate overexpression of a pathway

within EZT-resistant CTCs. ‘*’ indicates a P-value<5% when testing median

MD score different from zero. WLS and GSEA could also prioritize pathways

at the 2% significance level, whereas DEGþEnrichment could not

Fig. 4. EZT exposure incurs consistent molecular expression in resistance-

associated pathways for within-group pairwise CTC comparisons. For the five

EZT-resistance pathways in Figure 3, effect size—as measured by MD scores

(Equation (2))—was calculated for each of the 477 and 635 pairs of CTC tran-

scriptomes using combinations within the EZT-resistance group and within

the EZT-naı̈ve group, respectively (Fig. 1C; Section 2.4), excluding CTCs

paired within patient. For each pathway of a cell pair, a P-value was deter-

mined for this MD score (Section 2.2.1). Each illustrated point represents the

proportion of CTC pairs that are significantly differentially expressed for a pri-

oritized pathway (Benjamini–Yekutieli adjusted P-value<5%). Note that the

direction of DEP is arbitrary for within-group pairs by construction. The vari-

ability in the statistic is indicated by a 95% bootstrap percentile confidence

interval for the proportion of differentially expressed pairs in a given pathway

(Section 2.4.1). The CTCs within the EZT-naı̈ve group (N-versus-N) exhibit

greater heterogeneity than CTCs within the EZT-resistant group (R-versus-R).

***, **, * indicate P-values <0.1%, 1% and 5% respectively, for testing a non-

zero difference in DEP prevalence (Section 2.4.1). Within-patient comparisons

are available in Supplementary Section II. Cross-group pathway analytics,

such as WLS, GSEA and DEGþEnrichment, cannot be shown here as they

are not designed to generate a measure of the effect size or significance for

each cell pair within group (Supplementary Section III)
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than EZT-resistant cells. Figure 5, Panel B contains novel modified

rose plots that visualize the magnitude and statistical significance of

individual CTC cross-group dysregulation. These plots provide

readily interpretable depictions of single-cell drug resistance (e.g.

naı̈ve CTCs with higher expression in resistance-associated path-

ways exhibit innate resistance). This color-coded, area-preserving

plot affords rapid recognition of patterns when scanning many cells.

Traditional cohort-based statistics cannot provide insight at this

level of granularity. As such, our analysis of single-cell differential

expression provides a framework for interpreting MD scores with a

(clinical) translational intent.

3.4 Limitations and future studies
This approach provides a framework for exploring alternate aggre-

gation methods in future studies between single cells grouped in dis-

tinct phenotypes and can be generalized to more than two

phenotypic groups. As our aggregation framework proceeds through

pairwise comparisons of a single-cell transcriptome to many distinct

cells, an inherent minimum number of compared cells are required.

Additional insight in the required sample size of these compared

population should be investigated via simulations under distinct ex-

perimental conditions such as background measurement noise,

batch effect noise, fold changes of pathway genes and percentage of

differentially expressed genes between two cells. Biologically vali-

dated positive and negative control datasets of truly dysregulated

pathways between subsets of CTCs would enable clearer evalu-

ations. However, conducting the biology in this leading edge field is

rate limiting, expensive and, likely, technologically challenging at

the single cell. To our knowledge, no such dataset exists for single-

cell RNA-seq of CTCs, and such studies should be completed as the

data become available in the future. Many single-cell analytic meth-

ods pool cells data together and use population statistics such as

correlation-based approaches to describe transcriptional diversity

across cells. Such methods (e.g. Treutlein et al., 2014) and others

seek to cluster cells into subpopulations for cell type classification. A

Fig. 5. Patient-specific transcriptome dynamics of therapeutic-resistance pathways unveiled by CCS in individual CTCs. (A) Stacked bar plot of central differential

pathway expression. Using MD scores (Equation (2)), the median pathway differential expression effect size of a single CTC was estimated by comparing the

pathway mRNAs of this cell of interest with that of all other cross-group CTCs (Fig. 1D). For each of the five pathways of a single cell, a ‘central DEP status’ was

determined for the corresponding MD score (Section 2.5). The majority of significantly DEPs within EZT-naı̈ve CTCs are relatively lower than the resistant CTCs in

these five pathways (and, conversely for the resistant CTCs). However, greater heterogeneity in DEPs exists within the EZT-naı̈ve patients. In particular, Pr17 and

Pr9 exhibit both up- and down-regulated CTCs. Pr6 is up-regulated in three of the pathways compared with the resistant group, indicating innate resistant to ther-

apy. Non-sig ¼ non-significant (pointwise P-value>5%). Pathway names are to the right of each bar graph. Group-based pathway analytics such as WLS, GSEA

and DEGþEnrichment cannot be shown here, as they are not designed to generate a measure of the effect size or significance for each cell pair (Supplementary

Section III). Legend: Pr##¼patient identifier (##). (B) Modified rose plots of CCS of two characteristic CTCs from the EZT-naı̈ve (top) and EZT-resistant (middle)

groups. Each rose plot displays five ‘petals’, one for each of the five resistance-associated pathways. The petal area corresponds to the negative log of the P-value

for the central pair (Section 2.6). The petals above the horizontal axis are higher expressed (in blue) in that CTC relative to the opposing treatment group (con-

versely for the lower expressed, in red). The legend (bottom) indicates the pathway and direction color-coding. The rose plots highlight the opportunity to infer

treatment sensitivity or resistance for a single cell
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subset of our proposed method (Section 2.2) is designed to account

for pairwise correlation within the framework of finding DEPs be-

tween known phenotypes, but does not currently identify novel sub-

populations of cells, a key ambition of single-cell ‘omics’.

4 Conclusion

scRNA-seq offers insight into transcriptional diversity of individual

cells and presents unprecedented actionable opportunities in biology

and medicine. The described methodologies of aggregation of cell–

cell statistical distances within pathways including CCS and cell-

centric visualizations bridge an analytical gap between cohort-based

statistics and single-cell expression signals. We provide evidence that

our framework accurately identifies DEPs in an individual cell.

Specifically, treatment-resistance pathways of individual CTCs were

differentially expressed in distinctive patterns when comparing pros-

tate cancer subjects treated with EZT to those treated without it.

Furthermore, single CTCs of some patients never exposed to EZT

presented a higher heterogeneity of treatment-resistance pathway

expression, with some CTCs strikingly similar to those of resistant

subjects. As many therapies target pathways, these single-cell ana-

lyses may provide biologically meaningful interpretations and clinic-

ally actionable metrics. These observations suggest the utility of

CCS to identify subjects likely to present resistance to future thera-

pies as well as transcriptome dynamics of resistance over time.
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